Evolutionary History of a Gene Controlling Brain Size
نویسنده
چکیده
When James Watson and Francis Crick reported the structure of DNA in 1953, the mechanism of inheritance was instantly apparent. The complementary pairing of the DNA bases in the double helix, the pair famously wrote, “immediately suggests a possible copying mechanism for the genetic material.’’ The structure helped explain one of the central problems of modern biology: how does genetic material get faithfully replicated and then passed on from generation to generation? It was long thought that DNA is the only unit of inheritance. Since then, it’s become clear that molecules of DNA are packaged into highly organized superstructures that themselves are inherited. These structures play a signifi cant role in the regulation of genes by preventing or facilitating protein–DNA interactions. In the eukaryotic cell (a cell with a nucleus), DNA exists as long threadlike molecules—a typical human cell contains some 6.5 feet (2 meters) of DNA—that associate with a variety of proteins to form a network called chromatin. Genomic DNA wraps around specialized DNApacking proteins called histones to form nucleosomes, which condense chromatin into chromosomes and thereby infl uence chromosome behavior. Chromosomes are in turn packaged in increasingly higher levels of organization, with some parts being dispersed and others condensed. The most condensed region is called heterochromatin, or silent chromatin. Gene expression is largely silent in these regions, since the proteins required for transcription can’t access DNA to transcribe genes when chromosomes are so tightly packed. Other regions of chromosomes exist in an extended state, called euchromatin. This is the most genetically active state; with genes exposed, transcription can easily occur. As chromatin shifts between these states, it infl uences gene expression, largely through the interactions of histones and large protein complexes that together assemble, remodel, and modify chromatin. Since proper cell function depends largely on activating the right gene at the right time, mechanisms have evolved that protect active genes from the intrusions of silencing structures like heterochromatin.
منابع مشابه
Placing intelligence into an evolutionary framework or how g fits into the r–K matrix of life-history traits including longevity
First, I describe why intelligence (Spearman’s g) can only be fully understood through r–K theory, which places it into an evolutionary framework along with brain size, longevity, maturation speed, and several other life-history traits. The r–K formulation explains why IQ predicts longevity and also why the gap in mortality rates between rich and poor has increased with greater access to health...
متن کاملLarger brain size indirectly increases vulnerability to extinction in mammals.
Although previous studies have addressed the question of why large brains evolved, we have limited understanding of potential beneficial or detrimental effects of enlarged brain size in the face of current threats. Using novel phylogenetic path analysis, we evaluated how brain size directly and indirectly, via its effects on life history and ecology, influences vulnerability to extinction acros...
متن کاملEvidence for small scale variation in the vertebrate brain: mating strategy and sex affect brain size and structure in wild brown trout (Salmo trutta).
The basis for our knowledge of brain evolution in vertebrates rests heavily on empirical evidence from comparative studies at the species level. However, little is still known about the natural levels of variation and the evolutionary causes of differences in brain size and brain structure within-species, even though selection at this level is an important initial generator of macroevolutionary...
متن کاملReconstructing the evolutionary history of microcephalin, a gene controlling human brain size.
The defining process in the evolution of primates and particularly humans is the dramatic expansion of the brain. While many types of genes could potentially contribute to this process, genes that specifically regulate brain size during development may be especially relevant. Here, we examine the evolution of the microcephalin gene, whose null mutation in humans causes primary microcephaly, a c...
متن کاملEvolution of the human ASPM gene, a major determinant of brain size.
The size of human brain tripled over a period of approximately 2 million years (MY) that ended 0.2-0.4 MY ago. This evolutionary expansion is believed to be important to the emergence of human language and other high-order cognitive functions, yet its genetic basis remains unknown. An evolutionary analysis of genes controlling brain development may shed light on it. ASPM (abnormal spindle-like ...
متن کاملP-121: Cloning and Expression of The Inosine Triphosphate Pyrophosphatase Gene Variant II in E.coli
Background Environmental and cellular inappropriate conditions can cause damages to cells nucleotide poll. Deamination and oxidation damages interfere with cell�s vital reactions. Inosine triphosphate pyrophosphatase (ITPA), an evolutionary conserved enzyme, plays a critical role in elimination of non-canonical bases. In human genome, the ITPA gene is located on chromosome 20 short arm and tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Biology
دوره 2 شماره
صفحات -
تاریخ انتشار 2004